Physical layer (layer 1)
Как видно из общей схемы расположения уровней в модели OSI, физический уровень (Physical layer) самый первый. Этот уровень описывает среду передачи данных. Стандартизируются физические устройства, отвечающие за передачу электрических сигналов (разъемы, кабели и т.д.) и правила формирования этих сигналов. Рассмотрим по порядку все составляющие этого уровня.
Большая часть сетей строится на кабельной структуре (хотя существуют сети, основанные на передаче информации с помощью, например, радиоволн). Сейчас существуют различные типы кабелей. Наиболее распространенные из них:
- телефонный провод;
-
коаксиальный кабель;
-
витая пара;
-
оптоволокно.
Телефонный кабель начал использоваться для передачи данных со времен появления первых компьютеров. Главным преимуществом телефонных линий было наличие уже созданной и развитой инфраструктуры. С ее помощью можно передавать данные между компьютерами, находящимися на разных материках, так же легко, как и вести разговор людям, которые находятся за много тысяч километров друг от друга. На сегодняшний день использование телефонных линий также остается популярным. Пользователи, которых устраивает небольшая скорость передачи данных, могут получить доступ к Internetу со своих домашних компьютеров. Основными недостатками использования телефонного кабеля является небольшая скорость передачи, т.к. соединение происходит не напрямую, а через телефонные станции. При этом требование к качеству передаваемого сигнала при передаче данных значительно выше, чем при передаче "голоса". А так как большинство аналоговых АТС не справляется с этой задачей (уровень "шума", или помех, и качество сигнала оставляет желать лучшего), то скорость передачи данных очень низкая. Хотя при подключении к современным цифровым АТС можно получить высокую и надежную скорость связи.
Коаксиальный кабель использовался в сетях еще несколько лет назад, но сегодня это большая редкость. Такой тип кабеля по строению практически идентичен обычному телевизионному коаксиальному кабелю – центральная медная жила отделена слоем изоляции от оплетки. Некоторые отличия есть в электрических характеристиках (в телевизионном кабеле используется кабель с волновым сопротивлением 75 Ом, в сетевом – 50 Ом).
Основными недостатками этого кабеля является низкая скорость передачи данных (до 10 Мбит/с), подверженность воздействиям внешних помех. Кроме того, подключение компьютеров в таких сетях происходит параллельно, а значит, максимальная возможная скорость пропускания делится на всех пользователей. Но, по сравнению с телефонным кабелем, коаксиал позволяет объединять близко расположенные компьютеры с намного лучшим качеством связи и более высокой скоростью передачи данных.
Витая пара ("twisted pair") – наиболее распространенное средство для передачи данных между компьютерами. В данном типе кабеля используется медный попарно скрученный провод, что позволяет уменьшить количество помех и наводок, как при передаче сигнала по самому кабелю, так и при воздействии внешних помех.
Существует несколько категорий этого кабеля. Перечислим основные из них. Cat 3 – был стандартизирован в 1991 г., электрические характеристики позволяли поддерживать частоты передачи до 16 МГц, использовался для передачи данных и голоса. Более высокая категория – Cat 5, была специально разработана для поддержки высокоскоростных протоколов. Поэтому его электрические характеристики лежат в пределах до 100Мгц. На таком типе кабеля работают протоколы передачи данных 10, 100, 1000 Мбит/с. На сегодняшний день кабель Cat5 практически вытеснил Cat 3. Основное преимущество витой пары перед телефонными и коаксиальными кабелями – более высокая скорость передачи данных. Также использование Cat 5 в большинстве случаев позволяет, не меняя кабельную структуру, повысить производительность сети (переходом от 10 к 100 и от 100 к 1000 Мбит/с).
Оптоволокно используется для соединения больших сегментов сети, которые располагаются далеко друг от друга, или в сетях, где требуется большая полоса пропускания, помехоустойчивость. Оптический кабель состоит из центрального проводника света (сердцевины) – стеклянного волокна, окруженного другим слоем стекла – оболочкой, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выходят за ее пределы, отражаясь от покрывающего слоя оболочки. Световой луч обычно формируется полупроводниковым или диодным лазером. В зависимости от распределения показателя преломления и от величины диаметра сердечника различают:
- одномодовое волокно;
- многомодовое волокно.
Понятие "мода" описывает режим распространения световых лучей в сердечнике кабеля. В одномодовом кабеле используется проводник очень малого диаметра, соизмеримого с длиной волны света. В многомодовом кабеле применяются более широкие сердечники, которые легче изготовить. В этих кабелях в сердечнике одновременно существует несколько световых лучей, отражающихся от оболочки под разными углами. Угол отражения луча называется модой луча. Оптоволокно обладает следующими преимуществами: устойчивость к электромагнитным помехам, высокие скоростные характеристики на больших расстояниях. Основным недостатком является как дороговизна самого кабеля, так и трудоемкость монтажных работ, так как все работы выполняются на дорогостоящем высокоточном оборудовании.
Физический уровень также отвечает за преобразование сигналов между различными средами передачи данных. Например, при необходимости соединить сегменты сети, построенные на оптоволокне и витой паре, применяют так называемые конверторы (в данном случае они преобразуют световой импульс в электрический).
Для включения компьютера в сеть используется специальное устройство – сетевой адаптер (Network adapter), позволяющий обмениваться наборами битов, представленными электрическими сигналами. Сетевая карта (так чаще называют сетевой адаптер) обычно имеет шину ISA или PCI для подключения в компьютер и соответствующий разъем для подключения к среде передачи данных (например, для витой пары, коаксиал и т.п.).
Теперь, когда мы знаем, как происходит соединение компьютеров в одну сеть, рассмотрим варианты физической схемы такой сети, или, другими словами, физической топологии (структуры локальной сети).
Топология "шина" (bus) показана на рис. 16.4.
Рис. 16.4. Топология "шина" (bus).
Все компьютеры и сетевые устройства подсоединены к одному проводу и фактически напрямую соединены между собой.
Топология "кольцо" (ring) показана на рис. 16.5.
Рис. 16.5. Топология "кольцо" (ring).
Кольцо состоит из сетевых устройств и кабелей между ними, образующих одно замкнутое кольцо.
Топология "звезда" показана на рис. 16.6.
Рис. 16.6. Топология "звезда" (star).
Все компьютеры и сетевые устройства подключены к одному центральному устройству.
Топология "расширенная звезда" (extended star) показана на рис. 16.7.
Рис. 16.7. Топология "расширенная звезда"(extended star).
Такая схема практически аналогична топологии "звезда", за одним исключением. Каждое устройство соединено с локальным центральным устройством, а оно, в свою очередь, соединено с центром другой "звезды".
Содержание раздела